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Phase speciation by extended x-ray absorption fine structure spectroscopy
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The application of x-ray absorption spectroscopy methods to both materials and life sciences is well
appreciated. However, the power of extended x-ray absorption fine structure~EXAFS! spectroscopy
as a quantitative structural technique has largely been limited by its application to the
microscopicallyhomogeneoussystems, in which the local environment around each absorbing atom
in the sample is the same. The growing interest in time-resolved EXAFS studies of systems in
physics, chemistry, biology, and materials science has reintroduced the requirement for an analytical
tool to probeheterogeneousmixturesin situ. While long being recognized as a premiere technique
for this role, EXAFS studies of mixtures have been particularly difficult due to the strong model
dependence and correlations between parameters in the fit. To circumvent these drawbacks, we
introduce two new techniques in EXAFS analysis: the principal component analysis and the residual
phase analysis. Using a test case of a heterogeneous mixture of two organometallic Co compounds,
we demonstrate that these new EXAFS modeling techniques, together with the existing one, the
multiple datasets fit method are the most suitable and adequate methods for phase speciation. In
addition, we discuss the application of these data analysis approaches to biological systems.
© 2002 American Institute of Physics.@DOI: 10.1063/1.1473193#
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INTRODUCTION

Time-resolved structural methods are having an
creased impact on biological1–6 and chemical7–9 research.
For example, the ability to generate detailed structural d
in real time can provide invaluable mechanistic insights i
protein reactions that may be used to link the static e
points provided by steady-state structural methods. Most
portant and relevant to this work, the use of time-resolv
x-ray absorption spectroscopy~TRXAS! procedures to fol-
low structural and electronic changes at catalytic metal c
ters in metalloenzymes during enzyme turnover has
promise of providing valuable structural-dynamic inform
tion in solution.5 To gain a predictive understanding of th
mechanism of catalysis involving metal oxides, and their
as supports of many other catalytic materials, theirin situ
hydrogen reduction has been recently studied using a c
bination of structural techniques.8 It has been demonstrate
that the discrimination between the two competing kine
models of the reduction mechanism was made possible
using the time-resolved XAS measurements.8

X-ray absorption spectroscopy is a unique structu
technique capable of providing bond lengths, coordinat
numbers, and electronic structures around a target atom
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millisecond-or-better time resolution.10 This structural infor-
mation can be provided with the precision ofca. 0.01 Å or
better. XAS can be applied to the crystalline phase, lo
dimensional systems, gaseous and liquid phases with e
facility.11 Due to these remarkable structural sensitivity, XA
is largely applied in a wide range of life science fields, su
as materials, environmental, and biological sciences.

The experimental and theoretical details of extend
x-ray absorption fine structure~EXAFS! have been exten
sively described in the literature.11 The technique has gaine
wide popularity recently, due to major breakthroughs both
the state of the EXAFS theory12–14 and the data analysi
methods.15–17With the development of theab initio theories
of EXAFS, which take into account multiple scatterings
electrons, the unique structural knowledge~coordination
numbers, bond distances, and bond angles! can be obtained
within the range of distances up to 7–8 Å in the best-c
scenario of bulk homogeneous samples or compounds.18

Unfortunately, the analytical power of the above tec
niques is greatly diminished when the system under inve
gation is a disordered heterogeneous mixture of spec
Each species that contains the absorbing element may
quite different local coordination around that element. T
greatly complicates the analysis, because the number o
relevant structural parameters may be comparable to or e
exceed the number of independent data points in the exp
mental spectra.19 However, there are many applications
9 © 2002 American Institute of Physics
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FIG. 1. Raw edge-step normalized absorption coe
cients in all samples.
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which the difference within the series of experimental sp
tra is due to the small number of externally controlled p
rameters; nevertheless, all the individual spectra can be t
retically described by the same or similar models. The m
recent examples of the XAS studies of the multicompon
mixtures are~a! time-resolved measurements, in which t
mixing fractions of species change with time;8 and ~b! the
studies of metal complexes in solutions with differentpH20

or different molar concentrations of ligands.21

In these cases, if all the experimental spectra are a
lyzed concurrentlyand physically reasonable constraints a
introduced, the increase in the total number of the data po
is smaller than the increase in the number of structural
rameters. Such an increase of the degrees of freedom in
fit can be executed in the framework of the multiple data
~MDS! if implemented, for example, in the FEFFIT progra
of the UWXAFS data analysis package.22 However, the
MDS fit method has a typical drawback: By involving add
tional ~and sometimes rather subjective! constraints among
the structural variables, the undesirable model dependen
the results is increased.

In this work, we develop two alternative approaches
the EXAFS data analysis of mixtures: principal compon
analysis~PCA! and residual phase analysis~RPA!. With the
first approach, we can obtain the number of chemically d
tinct species in the heterogeneous samples model inde
dently, by analyzing the samples’ EXAFS spectra. In so
cases, when the suitable experimental or theoretical s
dards are available, the PCA allows us to identify the spe
and obtain the mixing fractions of all the species in t
samples. The second approach, the RPA, is a superior t
nique if the identification of the samples is difficult whe
using the MDS fit or the PCA. If both the number of th
species as well as the identities ofsomeof the species in the
samples are known in advance, the RPA method allows u
identify the remaining species in the samples and obtain t
mixing fractions.
Downloaded 24 May 2002 to 130.199.3.2. Redistribution subject to AIP
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To compare the reliability and limitations of the MDS fi
PCA, and RPA, we used all three techniques to study a
case of a heterogeneous mixture of two organometallic c
pounds: Cobalt acetylacetonate~Co-ACAC! and cobalt
tetraphenyl-prophine~Co-TPP!.

MATERIALS AND METHODS

Sample preparation. Cobalt acetylacetonate~Co-ACAC!
and cobalt tetraphenyl-prophine~Co-TPP! in an analytical
grade were purchased from Sigma. Five mixtures
@Co-ACAC#12x@Co-TPP#x were prepared by mixing, with
x50, 0.33, 0.5, 0.67, and 1.0. The mixtures were weighed
analytical balance, ground with mortar and pestle, a
sieved, to ensure that the particles size is small compare
the inverse absorption edge jump at the Co K edge. T
separate mixtures were brushed onto Scotch tape
mounted in copper sample holders. The accuracy of the m
ing was;5%.

Data collection and analysis. X-ray absorption data were
measured using the Agere/UIUC beamline X16C at the N
tional Synchrotron Light Source, located at the Brookhav
National Laboratory in Upton, New York. X-ray absorptio
coefficients in the samples were measured in fluoresce
mode by using the ion chamber for the incident and
Stern–Heald detector for fluorescent radiation intensities,
spectively. For the beam energy calibration, the reference
metal foil was measured simultaneously with the sample
the transmission mode. The energy was varied from 200
below to 1000 eV above the Co K edge. The x-ray abso
tion coefficients were aligned in the absolute energy and n
malized by the absorption edge jumps.

RESULTS

The local structural environments in the Co-ACAC a
Co-TPP pure compounds are dramatically different. In C
ACAC @Fig. 1~a!#, the Co~III ! ion is coordinated by six oxy-
gen atoms, with average bond distances of 1.88 Å, formin
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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distorted octahedron; in Co-TPP@Fig. 1~b!#, the Co~II ! ion is
surrounded by four nitrogen atoms at an average bond
tance of 1.95 Å in quasiplanar geometry. The differences
the coordination number between the two compounds
reflected in the pre-edge transitions of the raw XAS d
~Fig. 2!. Specifically, Co-TPP contains the 1s-4p peak inten-
sity at 7715 eV, which is typical of square planar geometry23

This transition is absent in Co-ACAC, due to its octahed

FIG. 2. Schematic of the Co-ACAC and Co-TPP structures.
Downloaded 24 May 2002 to 130.199.3.2. Redistribution subject to AIP
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geometry around the Co ion. The extent of mixing is r
flected in the gradual reduction of the 1s-4p transition and
in the change of the other edge features. The coordina
numbers and distances of the next neighboring shells w
determined by EXAFS data analysis~Table I!. The results of
the pure compounds by EXAFS fitting are in good agreem
with those reported by x-ray crystallography. These res
outline the feasibility of differentiating between the tw
compounds by EXAFS analysis.

Multiple dataset fits. The theoretical EXAFS signals
Co-ACAC and Co-TPP were calculated using FEFF712 The
atomic coordinates for FEFF7 for the pure compounds w
taken from the available crystallography data.24 As a result of
FEFF7 calculations, the partial Co–O, Co–N, and Co–C t
oretical contributions~corresponding to the most significan
single-scattering nearest neighbor interactions in Co-AC
and Co-TPP, respectively! were constructed. We verified th
reliability of the analysis by fitting the FEFF7 theory to th
experimental data for both Co-ACAC and Co-TPP~pure!.
Both the fit quality~Fig. 3!, and the good agreement of th
best-fit values of the bond lengths between Co and its nea
neighbors with the crystallography data~Table I! show that
our procedure is reliable.

To fit the mixed system@Co-ACAC#12x@Co-TPP#x ,
EXAFS data for x50.33, 0.5, and 0.67~the theoretical
EXAFS signals for the pure Co-ACAC and Co-TPP phas!
were weighted with the mixing factors 12x and x, respec-
tively, multiplied byk2, and then Fourier transformed intor
space, where the nonlinear least squares fits were perfor
concurrently, on the three datasets, using the prog

TABLE I. Best fit values for the nearest neighbor distances~in Å! to Co in
Co-ACAC and Co-TPP species obtained by the non-linear least squar
of EXAFS theory~FEFF7! to the data~Fig. 3!. The notations of Co neigh-
bors in Co-ACAC and in Co-TPP are the same as in Fig. 2. The subs
next to the neighboring atom symbol indicates the coordination numbe
the neighbor. Uncertainties in the distances obtained from EXAFS are g
in parentheses.

Co-ACAC Co-TPP

Neighbor O6 Cl6 C23 N4 Cl8 C24

XRD 1.88 2.78 3.13 1.95 2.99 3.31
EXAFS 1.89~1! 2.82~2! 3.13~4! 1.96~1! 2.99~1! 3.31~1!
FIG. 3. Fourier transform magnitudes of thek2-weighted EXAFS data~symbols! and FEFF fit~solid! for pure Co-ACAC and Co-TPP compounds.
 license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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FEFFIT22 ~Fig. 4!. Thek ranges andr ranges in the fits were
from 3 to 12 Å21 and from 1.1 to 3 Å, respectively. Th
variables in the fits were the following.

~1! The corrections to the model distances for the th
Co–O, Co-C1, Co-C2 nearest neighbors in the Co-AC
phase and for the three Co–N, Co-C1, Co-C2 nearest ne
bors in the Co-TPP phase~Fig. 2!.

~2! The mean square deviations~EXAFS Debye–Waller
factors!.

~3! Three mixing fractions,xfit .
~4! The corrections to the photoelectron energy orig

(E0).
~5! The passive electrons amplitude reduction facto11

for Co.
The total number of variables~17! was, therefore, much

smaller than the total number of relevant independent d
points in the five EXAFS spectra~38!. The best fit results for
the mixing fractions are reported in Table II.

Principal component analysis. The standard PCA
scheme represents each experimental spectrum as a v
xi ( i 51,...,M ) in the N-dimensional space, whereN is the
number of data points in each spectrum andM is the number
of spectra. The data matrixD, of the dimensionM3N, is
constructed from all the datasets. By finding theM eigenvec-
tors and eigenvalues ofD, and by arranging the eigenvecto
in the descending order of eigenvalues, one can construc
ordered orthogonal basis. Each original spectrum can be
resented as a linear combination ofM basic vectors, orcom-
ponents. By selecting the eigenvectors having thelargestei-
genvalues and neglecting those with thesmallestones, one
can represent all the datasets by using a linear combina
of just a few (Mc) principal components~eigenvectors!. Be-
causeMc,M,N ~in most practical cases,Mc!N!, the
PCA provides a convenient way to reduce the dimension
the representation.

For the phase speciation purpose, the translation of
standard PCA scheme into the EXAFS language is strai

FIG. 4. Multiple dataset fit results. Shown are the Fourier transform m
nitudes of thek2-weighted EXAFS data~symbols! and FEFF fit~solid! for
the @Co-ACAC# 12x:@Co-TPP# x mixture atx50.33, 0.5, and 0.67.
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forward. The EXAFS oscillations, normalized and bac
ground subtracted, now play a role in the PCA vectorsxi .
The dimensionN is the number of energy points in the spe
trum. TheMc principal components necessary to reconstr
the original data within the experimental noise now cor
spond toMc distinct species in the original spectra.25 Thus, it
is possible to discover how many different species are in
sample without anya priori knowledge of the identity of
these species. At the subsequent stages of the analysis
species are identified by a comparison of the suitable exp
mental~or theoretical! standards with the linear combinatio
of the obtained components. The mixing fractions of diffe
ent species in all samples are then obtained by a linear le
square fitting.

In this work, we used theMATHEMATICA ™-based
program,26 implementing the PCA method to analyze th
k2x(k) data in thek-range from 2 to 11.5 Å21. For five
samples withx50, 0.33, 0.5, 0.67, and 1, we obtained the
of five eigenvalues and eigenvectors~components!. By ex-
amining the decay of the eigenvalues with the compon
number, it is possible to obtain the least number of com
nents~species in the sample! using the ‘‘scree test.’’ This is a
graphic method for determining the number of princip
components. The eigenvalues are plotted in the sequenc
their decrease, and the number of principal component
chosen, where the curve levels off to a linear decline. Fig
5~a! suggests a two-component mixture, because the eig
values level off, beginning with the third component. By
linear27 fit to the reference-pure compounds, two of the
Co-ACAC and Co-TPP, provided excellent fit, as expect
This proves that the two pure compounds indeed serve
good standards for this problem.

The reproduction of the data, for allx using the two
principal components, is shown in Fig. 5~b!. After rotating
the matrix of the components onto the matrix of the stand
compounds data, the mixing fractionsxPCA were obtained
~Table II!. It should be noted that the end values of the fra
tional coefficients~0 and 1!, as obtained by the PCA, ar
always correct, and the comparison should be made o
with the three intermediate concentrations.

Residual phase analysis (RPA). The RPA approach uti-
lizes one of the known components, in this case the p
compound, as a ‘‘starting phase.’’ The ‘‘starting phase’’
then fractionated and iteratively subtracted from the to
XAS signal to produce corresponding residual spectra. T
individual residual spectra are analyzed to obtain the bes

For simplicity, we can examine the case of the two-pha
mixture, where the total experimental EXAFS data can
written as

xD
ex~k!5xxs

ex~k!1~12x!xR~k!, ~1!

and where the first term on the right side of the Eq.~1!
describes EXAFS from the starting~known! phase, which
will be subtracted from the total signal. The second te
denotes the EXAFS, originating from the residual pha
only. The weighting coefficientx in Eq. ~1! is the actual
composition of species that is to be determined by t
method. We can assume that, in a heterogeneous mixture
local environment around the absorbers in each specie

-
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9453J. Chem. Phys., Vol. 116, No. 21, 1 June 2002 Phase speciation by x-ray absorption spectroscopy
unaffected by the presence of other species~this assumption
is validated by the well-established transferability of amp
tudes and phases in EXAFS!. Under this assumption, Eq.~1!
is exact.

If the appropriate models of the coordination enviro
ment of the absorber in the residual phase can be c
structed, we can obtain the approximation forx as well, even
though we know neither the actual value ofx nor the identity
of the residual phase. By introducing an adjustable mix
fraction y, we can approximate the experimental EXAF
originating from the residual phase and normalized per
absorbing atom by

x̃R~k!5
xD

ex~k!2yxS
ex~k!

12y
. ~2!

Note thatx̃R(k) is not expected to be equal to the unknow
residual phase signalxR(k) unlessy5x. We can construct
the theoretical EXAFS signal,xR

th(k), corresponding to the
residual phase,xR(k). Then, by varying the structural pa
rameters in the theory, while fitting thexR

th to x̃R ,28 we can

FIG. 5. Principal component analysis results.~a! The ‘‘scree test’’ demon-
strates that using only two principal components with the highest eigen
ues must be sufficient to reproduce all the data.~b! Data reproduction using
the two principal components.
Downloaded 24 May 2002 to 130.199.3.2. Redistribution subject to AIP
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obtain the best fit values for these parameters for each v
of the external parametery, at the same time minimizing the
statistical chi squarex2:

x25
P

Ne2 (
i 51

N

~ x̃R2xR
th!2, ~3!

whereP is the number of independent parameters in the
N is the number of data points in the fit, ande2 is the mea-
surement uncertainty. By substituting thex̃R @Eq. ~2!# and
xD

ex @Eq. ~1!# into Eq. ~3!, and by assuming thatxR
th(k) is a

good model forxR(k), we obtain

x25
~x2y!2

~12y!2

P

Ne2 (
i 51

N

~xS
ex2xR

th!2. ~4!

Therefore, the statisticalx2 will change quadratically with
x2y in the vicinity of y5x and will exhibit aminimumat
the actual value of the mixing fractionx, which solves the
problem of the residual phase analysis. Equation~4! confirms
the intuitive prediction that the quality of the fit will be th
best at the actual value ofx, because the systematic erro
associated with the subtraction will be minimized whenx is
correct.

We used the pure Co-TPP EXAFS data as the kno
phasexS

ex(k) @Eq. ~1!# for the subtraction purpose. The re
sidual phase data,x̃R(k) @Eq. ~2!#, were constructed for ally
between 0 and 1, with the increment of 0.1 for the mixtur
data withx50.33, 0.5, and 0.67.

The residual phase theoretical EXAFS signalxR
th(k) was

constructed with FEFF in accordance with the Co-TPP str
ture. The fitting variables included the corrections to t
Co–N, Co-C1, and Co-C2 distances@Fig. 2~b!# and their
mean square disorders. The correctionDE0 to the photoelec-
tron energy origin was varied as well. The passive elect
reduction factor,S0

2, was fixed at 0.77 in the fits. This valu
is the average between theS0

250.73 and 0.80 obtained in th
FEFF7 fits to the experimental EXAFS data of pu
Co-ACAC and Co-TPP compounds, respectively. The to
number of fitting variables, 7, was smaller than the to
number of the independent data points~10!.

To run the RPA automatically, a suite of UNIX scrip
was developed to allow for both the rapid change of
theoretical model parameters used to calculatexR

th(k) and the
sequential fits of the experimental data while incrementiny
from 0 to 1. The statistical chi-square values obtained in e
fit were then analyzed as the function ofy, and their minima
were obtained~Fig. 6!. Then, the corresponding mixing frac
tions were defined as the positions of the minima~Table II!,
in accordance with Eq.~4!. It is important to mention that
despite the statistical chi square being in qualitative agr
ment with Eq.~4!, the minima in Fig. 6 are greater than
The reason is that Eq.~4! was derived under assumption th
the theoretical EXAFS function provides the perfect fit to t
experimental data. However, due to both systematic and
tistical errors in the theory and in the experiment, the the
always deviates from the experiment, explaining the resid
positive chi-square values at all the minima in Fig. 6.

l-
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FIG. 6. Reduced statisticalx2 obtained for the compositionsx50.33, 0.5, and 0.67, using the residual phase analysis.
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DISCUSSION

Table II outlines the results of the quantitative compa
sons of the three analytical approaches appropriate for
chemical phase speciation, using EXAFS spectroscopy m
surements of the heterogeneous mixtures. Each ana
method resulted in the determination of the mixing fractiox
of the phases, Co-ACAC and Co-TPP in the test mixtu
@Co-ACAC#12x@Co-TPP#x . For all three methods~the mul-
tiple dataset fit, principal component analysis, and resid
phase analysis!, the resultant mixing fractionsx were in good
agreement with the known concentrations of the Co-T
species. However, these three methods have their uniqu
eas of application. The MDS fit relies heavily on theoretic
modeling of the EXAFS data ineachspecies. It is the mos
powerful tool when the number of variables is much sma
than the number of the experimental data points.

If the number of variables approaches the number
data points, it usually means that either the data qualit
poor or the theoretical model relies heavily on the large nu
ber of adjustable parameters. In both cases, confidence i
results is diminished, and it becomes dangerously eas
overinterpret the data. Such a limitation, predicted by
information theory,29 is usually called the information bottle
neck of EXAFS data analysis. The fitting procedure becom
even more ambiguous if the number of species is unkno
In that case, it is virtually impossible to analyze the loc
structure of the mixed species reliably. A typical example
such a complication is the analysis of catalytic intermedi
states during biocatalysis by, e.g., metalloenzymes. In m
cases, the enzymatic catalysis is rapid and involves a c
of intimate chemical changes within the catalytic site of t
protein. Often, these changes can be related to struc
changes that may be directly correlated with the reac
mechanism. However, the determination of the number

TABLE II. Concentration x of the Co-TPP phase in the
@Co-ACAC#12x@Co-TPP#x samples obtained using the three different me
ods:~1! by fitting the FEFF7 theory to the EXAFS data,~2! by using the
principal component analysis and~3! by the residual phase analysis.

Compositionx of Co-TPP

As prepared 0.33 0.5 0.67
MDS FIT 0.3~1! 0.62~15! 0.8~2!
PCA 0.36 0.57 0.79
RPA 0.3 0.6 0.7
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the identity of the intermediate states during biocatalysis
still a very complicated task, due to the lack of sufficie
experimental and computational tools

If the number of the species in the sample is unknow
the principal component analysis is the ideal method for
taining this number, model independently. In addition, as d
cussed in greater detail elsewhere, the PCA allows the de
tion of the changes in the data that would normally
considered below the sensitivity level of traditional EXAF
analysis methods.30 We would like to mention that PCA ha
recently been recognized as an important tool for phase
ciation using XANES data.25 The important prerequisite fo
the success of PCA analysis of XANES spectra, howeve
the presence of distinctly different features in the spectra
each individual species. It is very common for most biolo
cally or environmentally important systems, for example,
contain XAS-active metals~Cu, Mn, Cr, S, etc.! in several
oxidation states, each of which generates quite different
gerprint features in their XANES spectra. Therefore, PCA
a very powerful tool for chemical phase speciation in the
cases. If, however, the target elements are present in
same oxidation states and have similar coordination, or if
XANES regions are relatively featureless, as in the case
heavy elements with significant lifetime broadening effec
the power of PCA to analyze XANES data is greatly dimi
ished.

In the situations where both the MDS fit of EXAFS da
and the PCA analysis of XANES are not plausible becaus
the above-mentioned reasons, the phase speciation ca
achieved by applying PCA to EXAFS data measured in
mixtures. The only available example31 of the successful use
of PCA to analyze EXAFS data has dealt withhomogeneous
systems, i.e., where all absorbing atoms are equivalent
respect to their environment throughout the sample. Our g
has been a different one: to characterize the feasibility
PCA as aphase speciationtechnique where there ismacro-
scopic segregation of different species throughout t
sample. We have demonstrated that the PCA provides co
mixing fractions of different species in the system, with
10–15% uncertainty.

Even though PCA provides a model-independent de
mination of the number of species in the mixtures, establi
ing their identities and, therefore, the mixing fractions d
pends on the availability of the appropriate experimental
theoretical standards. The problem becomes complicate

-
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there is no preferred theoretical or experimental standard
all the species in the data, e.g., the structure of catal
intermediate states in enzymatic catalysis. In these case
proposed by this work, the phase speciation problem ma
then solved by the residual phase analysis. The deconv
tion of the species may be simplified by subtracting the c
tribution of the starting phase from the total experimen
data, as described above using the RPA, if there is a h
degree of confidence about the local structure of the star
phase in the time-resolved measurements and, in additio
these species are present in the sample at all times o
reaction. The analysis of species remaining after subtrac
the known species can be best performed by fitting the
oretical model to the EXAFS data. This procedure redu
the number of variables in the analysis and increases co
dence in the results. Therefore, RPA may be most suitable
the XAS analysis of complex and dynamic systems such
metalloenzymes. The availability of three-dimensional p
tein structures and accessibility to the protein data b
~PDB! provide a new means for structural dynamic inves
gation by XAS. Specifically, the development of tim
resolved XAS has the potential to provide detailed structu
data in real time and, therefore, can provide invalua
mechanistic insight into enzyme reactions. Using RPA
phase speciation in time-resolved XAS data analysis, in c
junction with available PDB coordinates as structural mo
els, may result in resolving catalytic intermediate states
evolve during enzymatic catalysis.

CONCLUSIONS

In this work, we compared different strategies approp
ate for the chemical speciation of heterogeneous mixtu
using EXAFS spectroscopy, which include multiple datas
fit, and two new EXAFS modeling techniques: princip
component analysis and residual phase analysis. The MD
method is most appropriate for mixed systems with a sm
number of species that are relatively well ordered and ch
acterized. In that case, both the mixing fractions of the s
cies and the local structures around the absorbing eleme
each species can be reliably obtained.

PCA, the other technique commonly used in statist
can also be utilized to solve the phase speciation problem
multicomponent mixtures, using their EXAFS data. T
unique advantage of this method is its robust, mod
independent determination of the number of unique spe
in the samples. If good experimental standards exist to
resent each species, this method can also reliably obtain
the identities and the mixing fractions of all the species in
sample. The main result, however, is that the true numbe
different species, as given by the number of principal co
ponents, remains valid, regardless of whether the ident
of the species and their mixing fractions were obtained.

RPA is the last method, which was developed in t
course of this work. RPA is the superior technique if both
EXAFS and PCA fail to establish the identities and mixi
fractions of the species. This method is particularly power
if the identities of one or more species in the mixture a
known in advance~e.g., the starting phase in the tim
resolved EXAFS measurements!. In that case, the known
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phase EXAFS data is subtracted from the experimental d
at each time step. The residual phase is analyzed with
fewer number of the adjustable variables providing the be
fit values of the mixing fractions of the residual phases,
well as their local structural characteristics. In addition, t
procedure has the promise of application in the analysis
time-resolved XAS of biological systems.
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